Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Environ Int ; 187: 108712, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38714028

RESUMO

BACKGROUND: Temperature variability (TV) is associated with increased mortality risk. However, it is still unknown whether intra-day or inter-day TV has different effects. OBJECTIVES: We aimed to assess the association of intra-day TV and inter-day TV with all-cause, cardiovascular, and respiratory mortality. METHODS: We collected data on total, cardiovascular, and respiratory mortality and meteorology from 758 locations in 47 countries or regions from 1972 to 2020. We defined inter-day TV as the standard deviation (SD) of daily mean temperatures across the lag interval, and intra-day TV as the average SD of minimum and maximum temperatures on each day. In the first stage, inter-day and intra-day TVs were modelled simultaneously in the quasi-Poisson time-series model for each location. In the second stage, a multi-level analysis was used to pool the location-specific estimates. RESULTS: Overall, the mortality risk due to each interquartile range [IQR] increase was higher for intra-day TV than for inter-day TV. The risk increased by 0.59% (95% confidence interval [CI]: 0.53, 0.65) for all-cause mortality, 0.64% (95% CI: 0.56, 0.73) for cardiovascular mortality, and 0.65% (95% CI: 0.49, 0.80) for respiratory mortality per IQR increase in intra-day TV0-7 (0.9 °C). An IQR increase in inter-day TV0-7 (1.6 °C) was associated with 0.22% (95% CI: 0.18, 0.26) increase in all-cause mortality, 0.44% (95% CI: 0.37, 0.50) increase in cardiovascular mortality, and 0.31% (95% CI: 0.21, 0.41) increase in respiratory mortality. The proportion of all-cause deaths attributable to intra-day TV0-7 and inter-day TV0-7 was 1.45% and 0.35%, respectively. The mortality risks varied by lag interval, climate area, season, and climate type. CONCLUSIONS: Our results indicated that intra-day TV may explain the main part of the mortality risk related to TV and suggested that comprehensive evaluations should be proposed in more countries to help protect human health.

2.
Environ Pollut ; 347: 123810, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493867

RESUMO

Brazil has experienced unprecedented wildfires recently. We aimed to investigate the association of wildfire-related fine particulate matter (PM2.5) with cause-specific cardiovascular mortality, and to estimate the attributable mortality burden. Exposure to wildfire-related PM2.5 was defined as exposure to annual mean wildfire-related PM2.5 concentrations in the 1-year prior to death. The variant difference-in-differences method was employed to explore the wildfire-related PM2.5-cardiovascular mortality association. We found that, in Brazil, compared with the population in the first quartile (Q1: ≤1.82 µg/m3) of wildfire-related PM2.5 exposure, those in the fourth quartile (Q4: 4.22-17.12 µg/m3) of wildfire-related PM2.5 exposure had a 2.2% (RR: 1.022, 95% CI: 1.013-1.032) higher risk for total cardiovascular mortality, 3.1% (RR: 1.031, 95% CI: 1.014-1.048) for ischaemic heart disease mortality, and 2.0% (RR: 1.020, 95% CI: 1.002-1.038) for stroke mortality. From 2010 to 2018, an estimation of 35,847 (95% CI: 22,424-49,177) cardiovascular deaths, representing 17.77 (95% CI: 11.12-24.38) per 100,000 population, were attributable to wildfire-related PM2.5 exposure. Targeted health promotion strategies should be developed for local governments to protect the public from the risk of wildfire-related cardiovascular premature deaths.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Incêndios Florestais , Humanos , Brasil/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Material Particulado/análise , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
3.
J Hazard Mater ; 467: 133676, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38354440

RESUMO

Enormous health burden has been associated with air pollution and its effects continue to grow. However, the impact of air pollution on labour productivity at the population level is still unknown. This study assessed the association between premature death due to PM2.5 exposure and the loss of productivity-adjusted life years (PALYs), in Brazil. We applied a novel variant of the difference-in-difference (DID) approach to assess the association. Daily all-cause mortality data in Brazil were collected from 2000-2019. The PALYs lost increased by 5.11% (95% CI: 4.10-6.13%), for every 10 µg/m3 increase in the 2-day moving average of PM2.5. A total of 9,219,995 (95% CI: 7,491,634-10,921,141) PALYs lost and US$ 268.05 (95% CI: 217.82-317.50) billion economic costs were attributed to PM2.5 exposure, corresponding to 7.37% (95% CI: 5.99-8.73%) of the total PALYs lost due to premature death. This study also found that 5,005,306 PALYs could be avoided if the World Health Organization (WHO) air quality guideline (AQG) level was met. In conclusion, this study demonstrates that ambient PM2.5 exposure is associated with a considerable labour productivity burden relating to premature death in Brazil, while over half of the burden could be prevented if the WHO AQG was met. The findings highlight the need to reduce ambient PM2.5 levels and provide strong evidence for the development of strategies to mitigate the economic impacts of air pollution.


Assuntos
Poluição do Ar , Brasil/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida , Material Particulado
4.
Environ Pollut ; 343: 123156, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142032

RESUMO

In the dynamic landscape of maternal and child health, understanding the intricate interplay between environmental factors and pregnancy outcomes is of paramount importance. This study investigates the relationship between maternal greenness exposure and preterm births in Brazil using data spanning from 2010 to 2019. Satellite-derived indices, including the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), were employed to assess greenness exposure during whole pregnancy in maternal residential area. Employing Cox proportional hazard models, we calculated the hazard ratios (HRs) with 95% confidence intervals (CIs) for changes in NDVI, while adjusting for individual and area-level covariates. In total, 24,010,250 live births were included. Prevalence of preterm birth was 11.5%, with a modest but statistically significant decreasing trend (p = 0.013) observed across the nation over the study period. The findings reveal a significant association between greenness exposure and a reduced risk of preterm birth. Specifically, for every 0.1 increase in NDVI, there was a 2.0% decrease in the risk of preterm birth (95%CI: 1.9%-2.2%). Stratified analyses based on maternal education and ethnicity indicated potential effect modifications, with stronger protective effects observed among younger mothers and those with less years of education. Sensitivity analyses using EVI yielded consistent results. In conclusion, this study suggests that higher maternal greenness exposure is linked to a decreased risk of preterm birth in Brazil. These findings imply that enhancing residential greenspaces could be a valuable public health strategy to promote maternal and child health in Brazil.


Assuntos
Nascimento Prematuro , Gravidez , Criança , Feminino , Humanos , Recém-Nascido , Nascimento Prematuro/epidemiologia , Peso ao Nascer , Estudos de Coortes , Brasil/epidemiologia , Fatores Socioeconômicos
5.
Environ Int ; 181: 108258, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837748

RESUMO

BACKGROUND: The epidemiological evidence on the interaction between heat and ambient air pollution on mortality is still inconsistent. OBJECTIVES: To investigate the interaction between heat and ambient air pollution on daily mortality in a large dataset of 620 cities from 36 countries. METHODS: We used daily data on all-cause mortality, air temperature, particulate matter ≤ 10 µm (PM10), PM ≤ 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) from 620 cities in 36 countries in the period 1995-2020. We restricted the analysis to the six consecutive warmest months in each city. City-specific data were analysed with over-dispersed Poisson regression models, followed by a multilevel random-effects meta-analysis. The joint association between air temperature and air pollutants was modelled with product terms between non-linear functions for air temperature and linear functions for air pollutants. RESULTS: We analyzed 22,630,598 deaths. An increase in mean temperature from the 75th to the 99th percentile of city-specific distributions was associated with an average 8.9 % (95 % confidence interval: 7.1 %, 10.7 %) mortality increment, ranging between 5.3 % (3.8 %, 6.9 %) and 12.8 % (8.7 %, 17.0 %), when daily PM10 was equal to 10 or 90 µg/m3, respectively. Corresponding estimates when daily O3 concentrations were 40 or 160 µg/m3 were 2.9 % (1.1 %, 4.7 %) and 12.5 % (6.9 %, 18.5 %), respectively. Similarly, a 10 µg/m3 increment in PM10 was associated with a 0.54 % (0.10 %, 0.98 %) and 1.21 % (0.69 %, 1.72 %) increase in mortality when daily air temperature was set to the 1st and 99th city-specific percentiles, respectively. Corresponding mortality estimate for O3 across these temperature percentiles were 0.00 % (-0.44 %, 0.44 %) and 0.53 % (0.38 %, 0.68 %). Similar effect modification results, although slightly weaker, were found for PM2.5 and NO2. CONCLUSIONS: Suggestive evidence of effect modification between air temperature and air pollutants on mortality during the warm period was found in a global dataset of 620 cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cidades , Temperatura Alta , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
6.
Nat Commun ; 14(1): 4894, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620329

RESUMO

Heat-related mortality has been identified as one of the key climate extremes posing a risk to human health. Current research focuses largely on how heat mortality increases with mean global temperature rise, but it is unclear how much climate change will increase the frequency and severity of extreme summer seasons with high impact on human health. In this probabilistic analysis, we combined empirical heat-mortality relationships for 748 locations from 47 countries with climate model large ensemble data to identify probable past and future highly impactful summer seasons. Across most locations, heat mortality counts of a 1-in-100 year season in the climate of 2000 would be expected once every ten to twenty years in the climate of 2020. These return periods are projected to further shorten under warming levels of 1.5 °C and 2 °C, where heat-mortality extremes of the past climate will eventually become commonplace if no adaptation occurs. Our findings highlight the urgent need for strong mitigation and adaptation to reduce impacts on human lives.


Assuntos
Biodiversidade , Temperatura Alta , Humanos , Temperatura , Aclimatação , Mudança Climática
7.
Environ Int ; 174: 107906, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37030285

RESUMO

BACKGROUND: Wildfire imposes a high mortality burden on Brazil. However, there is a limited assessment of the health economic losses attributable to wildfire-related fine particulate matter (PM2.5). METHODS: We collected daily time-series data on all-cause, cardiovascular, and respiratory mortality from 510 immediate regions in Brazil during 2000-2016. The chemical transport model GEOS-Chem driven with Global Fire Emissions Database (GFED), in combination with ground monitored data and machine learning was used to estimate wildfire-related PM2.5 data at a resolution of 0.25°â€ˆ× 0.25°. A time-series design was applied in each immediate region to assess the association between economic losses due to mortality and wildfire-related PM2.5 and the estimates were pooled at the national level using a random-effect meta-analysis. We used a meta-regression model to explore the modification effect of GDP and its sectors (agriculture, industry, and service) on economic losses. RESULTS: During 2000-2016, a total of US$81.08 billion economic losses (US$5.07 billion per year) due to mortality were attributable to wildfire-related PM2.5 in Brazil, accounting for 0.68% of economic losses and equivalent to approximately 0.14% of Brazil's GDP. The attributable fraction (AF) of economic losses due to wildfire-related PM2.5 was positively associated with the proportion of GDP from agriculture, while negatively associated with the proportion of GDP from service. CONCLUSION: Substantial economic losses due to mortality were associated with wildfires, which could be influenced by the agriculture and services share of GDP per capita. Our estimates of the economic losses of mortality could be used to determine optimal levels of investment and resources to mitigate the adverse health impacts of wildfires.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Incêndios Florestais , Brasil/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Aprendizado de Máquina , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Fumaça , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
8.
Environ Health Perspect ; 131(3): 37002, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36883823

RESUMO

BACKGROUND: Epidemiological evidence on the health risks of sulfur dioxide (SO2) is more limited compared with other pollutants, and doubts remain on several aspects, such as the form of the exposure-response relationship, the potential role of copollutants, as well as the actual risk at low concentrations and possible temporal variation in risks. OBJECTIVES: Our aim was to assess the short-term association between exposure to SO2 and daily mortality in a large multilocation data set, using advanced study designs and statistical techniques. METHODS: The analysis included 43,729,018 deaths that occurred in 399 cities within 23 countries between 1980 and 2018. A two-stage design was applied to assess the association between the daily concentration of SO2 and mortality counts, including first-stage time-series regressions and second-stage multilevel random-effect meta-analyses. Secondary analyses assessed the exposure-response shape and the lag structure using spline terms and distributed lag models, respectively, and temporal variations in risk using a longitudinal meta-regression. Bi-pollutant models were applied to examine confounding effects of particulate matter with an aerodynamic diameter of ≤10µm (PM10) and 2.5µm (PM2.5), ozone, nitrogen dioxide, and carbon monoxide. Associations were reported as relative risks (RRs) and fractions of excess deaths. RESULTS: The average daily concentration of SO2 across the 399 cities was 11.7 µg/m3, with 4.7% of days above the World Health Organization (WHO) guideline limit (40 µg/m3, 24-h average), although the exceedances occurred predominantly in specific locations. Exposure levels decreased considerably during the study period, from an average concentration of 19.0 µg/m3 in 1980-1989 to 6.3 µg/m3 in 2010-2018. For all locations combined, a 10-µg/m3 increase in daily SO2 was associated with an RR of mortality of 1.0045 [95% confidence interval (CI): 1.0019, 1.0070], with the risk being stable over time but with substantial between-country heterogeneity. Short-term exposure to SO2 was associated with an excess mortality fraction of 0.50% [95% empirical CI (eCI): 0.42%, 0.57%] in the 399 cities, although decreasing from 0.74% (0.61%, 0.85%) in 1980-1989 to 0.37% (0.27%, 0.47%) in 2010-2018. There was some evidence of nonlinearity, with a steep exposure-response relationship at low concentrations and the risk attenuating at higher levels. The relevant lag window was 0-3 d. Significant positive associations remained after controlling for other pollutants. DISCUSSION: The analysis revealed independent mortality risks associated with short-term exposure to SO2, with no evidence of a threshold. Levels below the current WHO guidelines for 24-h averages were still associated with substantial excess mortality, indicating the potential benefits of stricter air quality standards. https://doi.org/10.1289/EHP11112.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Poluentes Ambientais , Humanos , Dióxido de Enxofre/toxicidade , Poluentes Atmosféricos/análise , Cidades/epidemiologia , Poluição do Ar/análise , Material Particulado/análise , Poluentes Ambientais/análise , Dióxido de Nitrogênio/análise , Exposição Ambiental/análise , Mortalidade
9.
Sci Total Environ ; 873: 162368, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828065

RESUMO

Non-optimal temperatures are associated with premature deaths globally. However, the evidence is limited in low- and middle-income countries, and the productivity losses due to non-optimal temperatures have not been quantified. We aimed to estimate the work-related impacts and economic losses attributable to non-optimal temperatures in Brazil. We collected daily mortality data from 510 immediate regions in Brazil during 2000 and 2019. A two-stage time-series analysis was applied to evaluate the association between non-optimum temperatures and the Productivity-Adjusted Life-Years (PALYs) lost. The temperature-PALYs association was fitted for each location in the first stage and then we applied meta-analyses to obtain the national estimations. The attributable fraction (AF) of PALY lost due to ambient temperatures and the corresponding economic costs were calculated for different subgroups of the working-age population. A total of 3,629,661 of PALYs lost were attributed to non-optimal temperatures during 2000-2019 in Brazil, corresponding to 2.90 % (95 % CI: 1.82 %, 3.95 %) of the total PALYs lost. Non-optimal temperatures have led to US$104.86 billion (95 % CI: 65.95, 142.70) of economic costs related to PALYs lost and the economic burden was more substantial in males and the population aged 15-44 years. Higher risks of extreme cold temperatures were observed in the South region in Brazil while extreme hot temperatures were observed in the Central West and Northeast regions. In conclusion, non-optimal temperatures are associated with considerable labour losses as well as economic costs in Brazil. Tailored policies and adaptation strategies should be proposed to mitigate the impacts of non-optimal temperatures on the labour supply in a changing climate.


Assuntos
Eficiência , Mortalidade Prematura , Masculino , Humanos , Temperatura , Anos de Vida Ajustados por Qualidade de Vida , Brasil/epidemiologia
10.
Circulation ; 147(1): 35-46, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36503273

RESUMO

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Isquemia Miocárdica , Acidente Vascular Cerebral , Humanos , Temperatura Alta , Temperatura , Causas de Morte , Temperatura Baixa , Morte , Mortalidade
11.
Sci Total Environ ; 854: 158636, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36087670

RESUMO

BACKGROUND AND AIM: The associations between COVID-19 transmission and meteorological factors are scientifically debated. Several studies have been conducted worldwide, with inconsistent findings. However, often these studies had methodological issues, e.g., did not exclude important confounding factors, or had limited geographic or temporal resolution. Our aim was to quantify associations between temporal variations in COVID-19 incidence and meteorological variables globally. METHODS: We analysed data from 455 cities across 20 countries from 3 February to 31 October 2020. We used a time-series analysis that assumes a quasi-Poisson distribution of the cases and incorporates distributed lag non-linear modelling for the exposure associations at the city-level while considering effects of autocorrelation, long-term trends, and day of the week. The confounding by governmental measures was accounted for by incorporating the Oxford Governmental Stringency Index. The effects of daily mean air temperature, relative and absolute humidity, and UV radiation were estimated by applying a meta-regression of local estimates with multi-level random effects for location, country, and climatic zone. RESULTS: We found that air temperature and absolute humidity influenced the spread of COVID-19 over a lag period of 15 days. Pooling the estimates globally showed that overall low temperatures (7.5 °C compared to 17.0 °C) and low absolute humidity (6.0 g/m3 compared to 11.0 g/m3) were associated with higher COVID-19 incidence (RR temp =1.33 with 95%CI: 1.08; 1.64 and RR AH =1.33 with 95%CI: 1.12; 1.57). RH revealed no significant trend and for UV some evidence of a positive association was found. These results were robust to sensitivity analysis. However, the study results also emphasise the heterogeneity of these associations in different countries. CONCLUSION: Globally, our results suggest that comparatively low temperatures and low absolute humidity were associated with increased risks of COVID-19 incidence. However, this study underlines regional heterogeneity of weather-related effects on COVID-19 transmission.


Assuntos
COVID-19 , Humanos , Temperatura , Umidade , Cidades/epidemiologia , COVID-19/epidemiologia , Incidência , Raios Ultravioleta , China/epidemiologia
12.
Nat Commun ; 13(1): 7651, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496479

RESUMO

To assess mortality risks and burdens associated with short-term exposure to wildfire-related fine particulate matter with diameter ≤ 2.5 µm (PM2.5), we collect daily mortality data from 2000 to 2016 for 510 immediate regions in Brazil, the most wildfire-prone area. We integrate data from multiple sources with a chemical transport model at the global scale to isolate daily concentrations of wildfire-related PM2.5 at a 0.25 × 0.25 resolution. With a two-stage time-series approach, we estimate (i) an increase of 3.1% (95% confidence interval [CI]: 2.4, 3.9%) in all-cause mortality, 2.6% (95%CI: 1.5, 3.8%) in cardiovascular mortality, and 7.7% (95%CI: 5.9, 9.5) in respiratory mortality over 0-14 days with each 10 µg/m3 increase in daily wildfire-related PM2.5; (ii) 0.65% of all-cause, 0.56% of cardiovascular, and 1.60% of respiratory mortality attributable to acute exposure to wildfire-related PM2.5, corresponding to 121,351 all-cause deaths, 29,510 cardiovascular deaths, and 31,287 respiratory deaths during the study period. In this study, we find stronger associations in females and adults aged ≥ 60 years, and geographic difference in the mortality risks and burdens.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Respiratórias , Incêndios Florestais , Adulto , Feminino , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Poluição do Ar/efeitos adversos , Mortalidade
13.
PLoS Med ; 19(9): e1004103, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121854

RESUMO

BACKGROUND: Long-term exposure to fine particles ≤2.5 µm in diameter (PM2.5) has been linked to cancer mortality. However, the effect of wildfire-related PM2.5 exposure on cancer mortality risk is unknown. This study evaluates the association between wildfire-related PM2.5 and site-specific cancer mortality in Brazil, from 2010 to 2016. METHODS AND FINDINGS: Nationwide cancer death records were collected during 2010-2016 from the Brazilian Mortality Information System. Death records were linked with municipal-level wildfire- and non-wildfire-related PM2.5 concentrations, at a resolution of 2.0° latitude by 2.5° longitude. We applied a variant difference-in-differences approach with quasi-Poisson regression, adjusting for seasonal temperature and gross domestic product (GDP) per capita. Relative risks (RRs) and 95% confidence intervals (CIs) for the exposure for specific cancer sites were estimated. Attributable fractions and cancer deaths were also calculated. In total, 1,332,526 adult cancer deaths (age ≥ 20 years), from 5,565 Brazilian municipalities, covering 136 million adults were included. The mean annual wildfire-related PM2.5 concentration was 2.38 µg/m3, and the annual non-wildfire-related PM2.5 concentration was 8.20 µg/m3. The RR for mortality from all cancers was 1.02 (95% CI 1.01-1.03, p < 0.001) per 1-µg/m3 increase of wildfire-related PM2.5 concentration, which was higher than the RR per 1-µg/m3 increase of non-wildfire-related PM2.5 (1.01 [95% CI 1.00-1.01], p = 0.007, with p for difference = 0.003). Wildfire-related PM2.5 was associated with mortality from cancers of the nasopharynx (1.10 [95% CI 1.04-1.16], p = 0.002), esophagus (1.05 [95% CI 1.01-1.08], p = 0.012), stomach (1.03 [95% CI 1.01-1.06], p = 0.017), colon/rectum (1.08 [95% CI 1.05-1.11], p < 0.001), larynx (1.06 [95% CI 1.02-1.11], p = 0.003), skin (1.06 [95% CI 1.00-1.12], p = 0.003), breast (1.04 [95% CI 1.01-1.06], p = 0.007), prostate (1.03 [95% CI 1.01-1.06], p = 0.019), and testis (1.10 [95% CI 1.03-1.17], p = 0.002). For all cancers combined, the attributable deaths were 37 per 100,000 population and ranged from 18/100,000 in the Northeast Region of Brazil to 71/100,000 in the Central-West Region. Study limitations included a potential lack of assessment of the joint effects of gaseous pollutants, an inability to capture the migration of residents, and an inability to adjust for some potential confounders. CONCLUSIONS: Exposure to wildfire-related PM2.5 can increase the risks of cancer mortality for many cancer sites, and the effect for wildfire-related PM2.5 was higher than for PM2.5 from non-wildfire sources.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias , Incêndios Florestais , Adulto , Poluentes Atmosféricos/análise , Brasil/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Masculino , Material Particulado/efeitos adversos , Material Particulado/análise , Estudos Retrospectivos , Adulto Jovem
14.
Sci Total Environ ; 849: 157836, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35934045

RESUMO

BACKGROUND: The burden of gastrointestinal infections related to hot ambient temperature remains largely unexplored in low-to-middle income countries which have most of the cases globally and are experiencing the greatest impact from climate change. The situation is particularly true in Brazil. OBJECTIVES: Using medical records covering over 78 % of population, we quantify the association between high temperature and risk of hospitalization for gastrointestinal infection in Brazil between 2000 and 2015. METHODS: Data on hospitalization for gastrointestinal infection and weather conditions were collected from 1814 Brazilian cities during the 2000-2015 hot seasons. A time-stratified case-crossover design was used to estimate the association. Stratified analyses were performed by region, sex, age-group, type of infection and early/late study period. RESULTS: For every 5 °C increase in mean daily temperature, the cumulative odds ratio (OR) of hospitalization over 0-9 days was 1.22 [95 % confidence interval (CI): 1.21, 1.23] at the national level, reaching its maximum in the south and its minimum in the north. The strength of association tended to decline across successive age-groups, with infants < 1 year most susceptible. The effect estimates were similar for men and women. Waterborne and foodborne infections were more associated with high temperature than the 'others' and 'idiopathic' groups. There was no substantial change in the association over the 16-year study period. DISCUSSION: Our findings indicate that exposure to high temperature is associated with increased risk of hospitalization for gastrointestinal infection in the hot season, with the strength varying by region, population subgroup and infection type. There was no evidence to indicate adaptation to heat over the study duration.


Assuntos
Exposição Ambiental , Temperatura Alta , Brasil/epidemiologia , Estudos Cross-Over , Exposição Ambiental/análise , Feminino , Hospitalização , Humanos , Lactente , Masculino , Temperatura
15.
Environ Int ; 166: 107350, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35749993

RESUMO

BACKGROUND: Long-term exposure to PM2.5 is proved to be linked with mortality. However, limited studies have estimated the PM2.5 related loss of life expectancy (LLE) and its changing trends. How much life expectancy would be improved if PM2.5 pollution is reduced to the new WHO air quality guideline (AQG) level is unclear. METHODS: Data on deaths from all-causes, cancer, cardiovascular and respiratory diseases were collected from 5,565 Brazilian municipalities during 2010-2018. A difference-in-differences approach with quasi-Poisson regression was applied to examine the PM2.5-years of life lost (YLL) associations and PM2.5 associated LLE. RESULTS: The annual PM2.5 concentration in each municipality from 2010 to 2018 was 7.7 µg/m3 in Brazil. Nationally, with each 10 µg/m3 increase in five-year-average (current and previous four years) concentrations of PM2.5, the relative risks (RRs) were 1.18 (95% CI: 1.15-1.21) for YLL from all-causes, 1.22 (1.16-1.28) from cancer, 1.12 (1.08-1.17) from cardiovascular and 1.17 (1.10-1.25) from respiratory diseases. Life expectancy could be improved by 1.09 (95% CI: 0.92-1.25) years by limiting PM2.5 concentration to the national lowest level (2.9 µg/m3), specifically, 0.20 (0.15-0.24) years for cancer, 0.16 (0.11-0.22) years for cardiovascular and 0.09 (0.05-0.13) years for respiratory diseases, with significant disparities across regions and municipalities. Life expectancy would be improved by 0.78 (0.66-0.90) years by setting the new WHO AQG PM2.5 concentration level of 5 µg/m3 as an acceptable threshold. CONCLUSIONS: Using nationwide death records in Brazil, we found that long-term exposure to PM2.5 was associated with reduced life expectancy from all-causes, cancer, cardiovascular and respiratory diseases with regional inequalities and different trends. PM2.5 pollution abatement to below the WHO AQG level would improve this loss of life expectancy in Brazil.

16.
Lancet Planet Health ; 6(5): e410-e421, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550080

RESUMO

BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5°â€ˆ× 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5°â€ˆ× 0·5° from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901-2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2-4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7-5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3-10·4), followed by Europe (4·4%, 2·2-5·6) and Africa (3·3, 1·9-4·6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.


Assuntos
Biodiversidade , Saúde Global , Austrália , Cidades , Feminino , Humanos , Gravidez , Temperatura
18.
Innovation (Camb) ; 3(2): 100225, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35340394

RESUMO

Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days' minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: -0.33 to 1.69), 1.34% (95% CI: -0.14 to 2.73), 1.99% (95% CI: 0.29-3.57), and 2.73% (95% CI: 0.76-4.50) of total deaths for Q1-Q4 (first quartile-fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25-9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: -0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.

19.
Sci Rep ; 12(1): 5178, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338191

RESUMO

Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.


Assuntos
Clima , Tempo (Meteorologia) , Temperatura Alta , Temperatura
20.
Environ Pollut ; 302: 119070, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231538

RESUMO

Long-term exposure to PM2.5 has been linked to lung cancer incidence and mortality, but limited evidence existed for other cancers. This study aimed to assess the association between PM2.5 on cancer specific mortality. An ecological study based on the cancer mortality data collected from 5,565 Brazilian cities during 2010-2018 using a difference-in-differences approach with quasi-Poisson regression, was applied to examine PM2.5-cancer mortality associations. Globally gridded annual average surface PM2.5 concentration was extracted and linked with the residential municipality of participants in this study. Sex, age stratified and exposure-response estimations were also conducted. Totalling 1,768,668 adult cancer deaths records of about 208 million population living across 5,565 municipalities were included in this study. The average PM2.5 concentration was 7.63 µg/m3 (standard deviation 3.32) with range from 2.95 µg/m3 to 28.5 µg/m3. With each 10 µg/m3 increase in three-year-average (current year and previous two years) concentrations of PM2.5, the relative risks (RR) of cancer mortality were 1.16 (95% confidence interval [CI]: 1.11-1.20) for all-site cancers. The PM2.5 exposure was significantly associated with several cancer-specific mortalities including oral, nasopharynx, oesophagus, and stomach, colon rectum, liver, gallbladder, larynx, lung, bone, skin, female breast, cervix, prostate, brain and leukaemia. No safe level of PM2.5 exposure was observed in the exposure-response curve for all types of cancer. In conclusion, with nationwide cancer death records in Brazil, we found that long-term exposure to ambient PM2.5 increased risks of mortality for many cancer types. Even low level PM2.5 concentrations had significant impacts on cancer mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Pulmonares , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Brasil/epidemiologia , Exposição Ambiental , Feminino , Humanos , Masculino , Mortalidade , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...